US 7,167,867 B1

1
SELF-DESCRIBING FILE SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is related to, and claims the priority of,
U.S. Provisional patent application Ser. No. 60/157,777 filed
Oct. 5, 1999 and entitled “Self-Describing File System” by
the same inventor Stephen A. Rago.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to the shared access of a computer
system’s file system storage by disparate, possibly unrelated,
applications, such as portable file system administrative
tools or sharing file systems in a storage area network
(SAN).

2. Description of Related Art

A “file system” is an abstraction a computer operating
system uses to ease the management of its user’s data. Data
are separated into storage units called “files” based on
subject matter. Related files can be grouped together (usu-
ally also by subject matter) by listing their names in the same
“directory.”

Applications that need to read or write files do so through
a “file system driver.” The driver translates an application’s
request into the operations needed to read or write the
storage locations that contain the data. The storage medium
is usually some sort of magnetic or optical disk, but need not
be limited to disks. For example, a file system driver can use
RAM as the backing store for temporary file storage.

Applications usually don’t know how their data are stored
on disk, and don’t want to know, for that matter. It is much
better to isolate the knowledge of the file system format in
some external place (the driver, in this case) than to embed
it in each application. This makes the applications smaller,
easier to write, and more portable. The benefits of portability
are not to be underestimated. Many different file system
formats exist, and it would be next to impossible to embed
knowledge about each one in an application.

In addition to portability, centralizing the control in the
file system provides a convenient way to serialize access to
the on-disk data structures. If each application were to
attempt to manage the file system data structures on disk,
they would need to agree amongst themselves so that only
one application modifies the same on-disk structure at a
time. The file system driver relieves applications from
having to worry about this task.

Thus, applications have evolved to ignore, for the most
part, how their files are stored on disk. Nonetheless, there are
still some cases where applications need to understand the
on-disk file system format. Obviously, the tools used to
create a file system or check a file system’s consistency need
to understand it’s format. They are implicitly tied to the file
system format, but other, more generic, applications might
also need to be able to interpret the file system on-disk data
structures.

For example, consider a conventional backup application
that relies on the file system driver to interpret the file system
format. The backup application searches the file system to
copy all files to some backup medium. As each file is read,
the file’s access time is updated. This interferes with
attempts to identify files that haven’t been used for long
periods of time. An administrator might wish to archive the
stale files and remove them from the disk, since they are

10

15

20

25

30

35

40

45

50

55

60

65

2

taking up disk space that might otherwise be available to
store files that are accessed more frequently.

The backup application makes this difficult to do. Of
course, the backup application could save the access time
before reading a file, and then restore the access time after
it has finished copying the file to the backup medium.
However, what if someone other than the backup application
reads the file while it is being backed up? The step of
restoring the access time can wipe out the change to the
access time that occurred when the file was read by someone
else. This can lead to the file being archived prematurely.

A possible solution is to have the backup application read
the disk device containing the file system and interpret the
file system data structures. This avoids the updated access
time, but makes the backup application specific to this file
system format. A software vendor wants to write the backup
application once and avoid customizing it for each different
file system format.

Although others have created self-describing files, no one
has attempted to create a self-describing file system. U.S.
Pat. No. 5,640,559 describes a way to encode file data and
relationships among data in a self-describing format to allow
them to be transmitted between computers more efficiently.
Another example is the Hierarchical Data Format (HDF)
defined by the National Center for Supercomputing Appli-
cations (NCSA). See NCSA HDFS5 Reference Manual,
Release 1.2, October 1999. It is a data format specification
and a set of libraries used to create self-describing data files.
It is commonly used to store scientific data.

Self-describing files have been used in a wide variety of
applications including encoding data for communication
between computer systems (U.S. Pat. No. 5,257,369),
encoding the data in a storage dump (U.S. Pat. No. 5,761,
739), a self-describing database management system (U.S.
Pat. No. 5,857,195), storing the state of objects in object-
oriented systems (U.S. Pat. No. 5,905,987), and encoding
file objects in a distributed computing environment (U.S.
Pat. No. 5,768,532). Before it was acquired by Microsoft,
Entropic, Inc. produced a library that encoded speech files in
a self-describing way. Although their documentation
referred to the “ESPS File System,” theirs was a library that
could create a set of files, and was not a general-purpose file
system as previously described. For more information see
Entropic Research Laboratory, Inc. ESPS/waves+ with
EnSig™ Application Notes. Chapter entitled “Non-ESPS
Programs and the ESPS File System.” Release 5.3, 1998.
http://www.ling.ed.ac.uk/help/entropic.

U.S. Pat. No. 5,950,203 describes a system with improved
access to data stored on a peripheral device. This applies to
computer systems that can access the same storage resources
on a Storage Area Network (SAN). In the method disclosed,
the server is the entity that determines a file’s block list. In
a self-describing file system, however, the clients can deter-
mine the block list themselves.

Overall, the prior art does not appear to suggest or
describe a system capable of attaining the same levels of
portability and efficiency as the self-describing file system
described herein.

SUMMARY OF THE INVENTION

Briefly described, the invention comprises a disk contain-
ing a file system and one or more computer systems that can
access the disk. Along with the file system, the disk contains
a formal description that allows applications to understand
the format of the file system.



